MPCE Costs for GGS

- 1. Technology Review
 - a. Best Available Control Technology (BACT)
 - i. Wet Scrubber for SO₂
 - ii. Selective Catalytic Reduction (SCR) for NO_x
 - iii. Powdered Activated Carbon (PAC) for Mercury
 - iv. Baghouse for Particulate Matter
 - b. "Bridge" Technologies
 - i. Dry Sorbent Injection (DSI) for SO₂
 - ii. Selective Non-Catalytic Reduction (SNCR) for NO_x
 - iii. PAC for Mercury
 - iv. Baghouse for Particulate Matter
- 2. Amount of Engineering Completed for each Technology for GGS
 - a. Wet Scrubber: ~15% (conceptual engineering complete)b. SCR: ~20% (preliminary engineering/design)
 - c. Baghouse: Complete
 - d. DSI: <1% (high level studies)e. SNCR: <1% (high level studies)
 - f. PAC ~20% (mostly GGS internal engineering/design)
- 3. Assumptions and Risks
 - a. BACT
 - i. Assumptions
 - 1. Use conservative design inputs (maximum heat input, dirty boiler conditions, etc) for equipment life of 20 years
 - 2. Remain able to burn all Powder River Basin (PRB) coals
 - 3. Ensure reliable, robust and proven design
 - 4. Achieve lowest possible emissions levels to meet current and future environmental regulations
 - ii. Risks
 - 1. Due to the degree of engineering which has been completed, the complexities of this option are well understood.
 - 2. Serves as excellent front end for, but does not remove, greenhouse gases.
 - 3. Requires lengthy construction period (3-5 years for both units)
 - b. "Bridge" Technologies
 - i. Assumptions
 - 1. Not a BACT technology would be used for a relatively short life span (5-10 years) for station shutdown scenario.
 - 2. Would not be a robust design since life span is limited.
 - 3. Lowest possible emissions not achievable nor required.
 - ii. Risks
 - 1. Not much engineering completed for these technologies. To learn more would require extensive, unit-specific testing. A west coast plant had the use of DSI mandated by their state environmental

- agency as a part of a "shutdown the plant by 2020" scenario. The plant spent nine months and \$1.5 million preparing for and conducting the testing. The best SO_2 removal efficiency for them is 50-60%.
- 2. Not a lot of actual experience with DSI on large plants. Could have unintended consequences on baghouses or air heaters.
- 3. As alluded to earlier, emissions removal efficiencies for both DSI and SNCR are very unit-specific and are much lower than either wet scrubber or SCR.
- 4. Would require regulatory "sanctioning" since it is not BACT may or may not get the "sanction".
- 5. Typical DSI and SNCR equipment have low capital costs, but very high O&M costs due to type and amount of reagent used.
- 6. Could limit which PRB coals could be burned.
- 4. GGS MPCE Assumptions Affecting Cost
 - a. Assume Engineer, Procure, Construct